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a b s t r a c t

This study assesses wave energy by combining long-term model reanalysis data with in situ observa-
tions in a multi-island region. A buoy was deployed in the center area of the southern South China
Sea (SCS) for 16 consecutive months. Neural network models are introduced to calibrate the significant
wave height and the mean wave period of the European Center for Medium-Range Weather Forecasts
(ECMWF) ERA5 reanalysis data. Based on the calibrated reanalysis data, wave energy potential in the
region is assessed. The results show relatively available wave resources from October to February in
climatology, with an average energy density higher than 5 kW m−1 and an available level frequency
higher than 50%. Wave energy potential is relatively poor in other months. In the last 40 years,
the wave energy density, available level frequency, and rich level frequency have shown significant
increasing trends, consistent with the wind enhancement in the northeast SCS. It is suggested that the
growth trend of waves in the northeast SCS may spread to the south region as swell propagation. The
analysis emphasizes that there can be significant differences in the results of wave energy assessments,
whether the data are calibrated or not. Therefore, the data accuracy needs to be fully evaluated when
adopting model results for the planning and utilization of wave energy in such region.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, the development and utilization of clean,
ollution-free, and renewable energy have attracted much atten-
ion. Wave energy has certain distinct advantages because it has
high and concentrated flux density (Pérez-Collazo et al., 2015).
he global potential reserve of wave energy has been estimated at
pproximately 2 TW (Gunn and Stockwilliams, 2012), which can
trongly meet the demand for the development and utilization of
ea resources far from the mainland. For example, wave energy is
xpected to support the development of remote islands and reefs
n the South China Sea (SCS) (Zheng and Li, 2015) in multiple
ields, such as marine ranches, drilling platforms, and scientific
quipment.
It is important to evaluate the wave power potential and its

ariabilities before planning energy utilization programs. Ade-
uate wave energy assessments have been performed in the SCS,
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nc-nd/4.0/).
depending on the significant wave height (Hs), etc. provided by
numerical models (Zheng et al., 2012, 2013; Ali et al., 2015; Lin
et al., 2019; Sun et al., 2020) and/or the corresponding reanalysis
product (Wan et al., 2015, 2018; Wang et al., 2018). However,
in the southern SCS (SSCS) (Fig. 1), a large number of islands
and reefs would significantly influence the wave dynamics by the
shading effect (Andréfouët et al., 2012; Fett and Kevin, 1976; Li
et al., 2022b; Ponce de León and Soares, 2005). The distribution
and variation of the wave energy would be blocked by the island
groups (Ali et al., 2015; Sun et al., 2020). As a result, common
wave models might not be complicated enough to characterize
the coexistence of swells from the open sea and local waves af-
fected by complex bathymetry in multi-island regions (Sun et al.,
2021), probably due to the limitation of spatial resolution (Tol-
man, 2003; Mao et al., 2014). Moreover, most satellite products
are unable to provide wave period data, which is indispensable
in wave energy calculation. Although in situ observations have
been used to calculate wave power directly (Chen et al., 2017) or
to verify the modeling data for further energy assessment (Zheng
et al., 2013; Wan et al., 2015, 2018; Lin et al., 2019), most of
them are confined to the northern China seas with relatively short
measuring periods. Studies combining in situ observations with
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Fig. 1. Geography and bathymetry of the South China Sea and the study site (red triangle) for the wave energy assessment. The two red boxes (W1 and W2) in
the left panel correspond to the calculation region for the annual variations of wind speed in Fig. 11. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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long-series model data to assess the wave energy in multi-island
regions in the SSCS are a desideration task at present.

The long-term variation of wave energy and its dynamic mech-
nism have been emphasized by scientists. Increasing studies
ave been carried out on the long-term trend of wave energy
n the Northwestern Pacific (Bromirski et al., 2013; Zheng and
i, 2015), North Atlantic (Reeve et al., 2011), the Persian Gulf
Kamranzad et al., 2013), Europe (Iglesias et al., 2009; Emmanouil
t al., 2016), and even the global oceans (Young et al., 2011;
heng, 2021). Most of them pointed out that the increase in
he frequency of gale events is the main reason for the rise of
lobal wave height and wave energy resources (Reeve et al., 2011;
oung et al., 2011; Zheng, 2021). However, in some unique areas
uch as the SSCS, the long-term trend of wave energy and its
elation with the variation of wind field still need to be clarified
ased on more accurate data.
Notably, artificial neural networks (ANNs) have been widely

sed to develop wave forecasting models or to improve wave pa-
ameter hindcasts for decades (Deo and Naidu, 1998; Guenaydin,
008; Li et al., 2020). Recently, several wave energy assessments
ave been implemented making use of the ANN method in dif-
erent regions, such as the Canary Islands in the North Atlantic
Avila et al., 2020), Brazil’s coast of the Atlantic (Sánchez et al.,
018), the Caspian Sea (Hadadpour et al., 2014), the Pacific and
tlantic coasts, and the Gulf of Mexico (Reikard et al., 2011;
ento et al., 2021). These studies showed that the developed
odels based on ANNs constitute an efficient tool to simulate
ave power quickly and accurately near coastal oceanic waters
Avila et al., 2020), making optimal use of in situ measurements to
haracterize the wave energy resources of coastal sites (Sánchez
t al., 2018), especially in the short-term assessment of wave
esources (Reikard et al., 2011; Bento et al., 2021). In particular,
he combination of the physics-based model and ANN yields
ore accurate wave energy simulations than either model alone

Reikard et al., 2011). Moreover, wave energy fluxes calculated
ith ANN-calibrated wave parameters are more accurate than
he direct forecast of the energy flux (Hadadpour et al., 2014).
herefore, ANNs can provide a promising tool for calibrating
odel data to accurately assess wave energy resources in multi-

sland regions. Compared with the traditional quantile mapping
ethod (Wood et al., 2002; Thrasher et al., 2012) which corrects

he modeling results by establishing a transfer function assuming
hat the observed and simulated values are subject to specific
 i
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probability distributions, the advantage of the proposed method
in this study is that more factors related to the target variable
can be considered. Through machine learning, our method can
establish an optimum relationship between multiple input factors
and the target variable without relying on given formulas.

This study provides an example of wave energy assessment
in a multi-island region of the SSCS based on a combination of
long-term model data and field observations by the ANN method.
A typical study site (10.0◦N, 115.5◦E) with 1200 m depth was set
up in the central area of the Nansha Islands region (Fig. 1). A buoy
was deployed at the site for 16 consecutive months. The ERA5
model data of 1979–2020 were calibrated by the buoy data and
then used to calculate wave energy parameters. The importance
of calibrated data for the assessment was further verified by
comparing the results of calibrated data with those of original
model data.

2. Data and methods

2.1. Reanalysis data and buoy observations

The ECMWF ERA5 reanalysis data, including significant wave
height (Hs), mean wave period (Tm), mean wave direction (Mdir),
wind velocity (Wvel), and wind direction (Wdir) at the study site
(Fig. 1) were obtained for further analysis. There are a total of
363048 groups of data (Hs, Tm, Mdir, Wvel, and Wdir) at one-
our intervals, starting from January 1979 to May 2020. ERA5 is
he fifth generation ECMWF reanalysis of the global climate and
eather (Hersbach et al., 2018), providing hourly estimates on
ingle levels for a large number of atmospheric, ocean-wave, and
and-surface quantities. It can be downloaded from the website
ttp://climate.copernicus.eu/climate-reanalysis.
Regarding the document of ECMWF ocean wave model output

arameters (ECMWF, 2021), the Hs is defined as Hs ≡ 4
√
m0, in

whichmn is the nth moment of spectral density. The Tm is defined
s Tm ≡ Tm−10 = m−1/m0 which is also commonly known as the
nergy mean wave period (Te, ERA5 Tm is collectively referred to
s Te hereinafter). Together with Hs, it can be used to determine
he wave power. Although the data combine a vast number
f historical observations into global estimates using advanced
odeling and data assimilation systems, few wave observations

n the SCS are available for the assimilation of the model. There

http://climate.copernicus.eu/climate-reanalysis
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Fig. 2. Comparisons of wave parameters from the buoy and ERA5. Upper panels are the time series of (a) Hs, (b) Te, and (c) Mdir. Lower panels are scattered plots
of (d–f) Hs and (g–i) Te during (d, g) the summer monsoon period, (e, h) the rest period, and (f, i) the whole observation period. In the upper panels (a–c), the
vertical lines separate the summer monsoon season and the rest season. In lower panels (d–f), the color indicates the percentage density of the scattered plots, and
the red line is a linear fitting curve of the scattered plots. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
is not even a long-term buoy in the whole SCS deployed by the
NOAA National Data Buoy Center.

A wave buoy was deployed at the study site (Fig. 1) on Novem-
ber 14, 2018, and 16 months of data were measured as of March
12, 2020. A Triaxys wave sensor manufactured by AXYS Tech-
nologies Inc., Canada, was equipped in the buoy to measure wave
parameters, i.e., Hs, Tm, and Mdir, every hour by the gravitational
acceleration method (Macisaac and Naeth, 2014).

In general, the buoy-observed wave period is not specified
in terms of the energy period Te. Te can be estimated by the
formula Te = αTp, where Tp is the peak period, and α depends on
the shape of the wave spectrum defining the sea state (Cornett,
2008). However, the Tp of the wave spectrum obtained through
discrete frequency has a runout, that is, unstable. Instead, the
buoy calculated the mean wave period Tm based on the second
moment of the spectrum Tm02, which is also known as the zero-
crossing period (Tz) as it corresponds to the mean period that is
determined from observations of the sea surface elevation using
the zero-crossing method. The relationship between Tm and Tp is
approximately given as Tp = 1.2Tm (Bedard, 2009; Zheng et al.,
2012; Wu et al., 2015; Chen et al., 2017). In this study, we
adopt a conservative approximation that α = 0.9, assuming that
the sea state in the SSCS is subjected to a standard JONSWAP
5069
spectrum. This assumption was used in wave power assessment
in the global ocean (Cornett, 2008), as well as in the offshore
waters of the China seas (Wu et al., 2015; Chen et al., 2017).
Consequently, Te from the real sea state is estimated by the buoy
observation as:

Te = 0.9 × 1.2Tm = 1.08Tm (1)

The accuracy of the ERA5 wave parameters is evaluated com-
pared with buoy observations in Fig. 2. As illustrated in Fig. 2a–c,
Hs, Te, and Mdir of ERA5 generally agree with the buoy obser-
vations in the variation trends. However, during the summer
monsoon season from May to September 2019, the ERA5 Hs is
larger than the observations, representing a root-mean-square
error (RMSE) of 0.51 m (Fig. 2d), twice the error for the rest
season from November 2018 to April 2019 and October 2019 to
March 2020 (Fig. 2e). The ERA5 Te is relatively larger than the
buoy observations throughout the whole period (Fig. 2b). There
is no essential difference in the accuracy of the ERA5 Te during
the summer monsoon and the rest time (Fig. 2g–i). Considering
that both Hs and Te are essential for calculating wave energy
density, they need further calibration to ensure the accuracy of
wave energy assessment.
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Fig. 3. The conception of the feed-forward neural network (NN).

2.2. Artificial neural network for data calibration

A multilayer feed-forward ANN is established to calibrate the
RA5 Hs and Te, combined with buoy data. As shown in Fig. 3,

the network is composed of an input layer, a hidden layer, and
an output layer. The information of the training samples from
the input layer gradually propagates forward through the transfer
function. If the output result cannot reach the expected output,
the observation data and the bias between the output signal and
the expected value will be returned to the input layer. Further-
more, the weight and threshold will be adjusted according to
the training error so that the output will constantly approach
the expected value. Finally, the weight coefficient matrix and the
threshold matrix will be determined by massive repeated train-
ing. The ANN adopted the Levenberg–Marquardt backpropagation
algorithm (Beale et al., 2010) for sample training by using the
MATLAB neural network toolbox. After tentative computation,
the number of nodes in the hidden layer was set as 8, and the
training times were 3000. The hidden layer used a hyperbolic
tangent sigmoid transfer function, while the output layer used a
linear transfer function. Such an ANN is an efficient and mature
algorithm that is widely used in the calibration, modeling, and
prediction of ocean hydrological parameters (e.g., Deo and Naidu,
1998; Londhe et al., 2016; Lu et al., 2019; Li et al., 2020).

In this study, the ANN structure was optimized by fully consid-
ring possible input variables. Five ANN models were established
o calibrate the ERA5 Hs and Te (Table 1). Among them, wave
arameters (Hs, Te, and Mdir), as well as wind velocities (Wvel),
ere gradually brought into the input level. The mean wave
irection and the wind vectors are decomposed into meridional
omponents (MdirX, WindX) and latitudinal components (MdirY,
indY ), respectively. Moreover, this study divided the data sam-
les into two datasets for calibrating Hs since the data accuracy
aries for different seasons (Fig. 2). One is May–September 2019,
nd the other is November 2018–April 2019 and October 2019–
arch 2020 (Datasets 1 and 2, Table 2). The two databases were

ndependently selected to establish the ANN model for Hs during
he summer monsoon and the rest periods. For Te, samples rang-
ng from November 2018 to March 2020 were taken into ANN
alibration (Dataset 3, Table 2). In each database, the earlier 80%
f the total data is used for network training. The remaining 20%
s involved in the verification of the training results. Then, the
NN models with the best calibration effect on Hs and Te can be
etermined.
5070
Table 1
Variable settings of the ANN models.
Model Input Output

NN H1 Hs Hs
NN H2 Hs, Te Hs
NN H3 Hs, Te, MdirX, MdirY Hs
NN H4 Hs, WindX, WindY Hs
NN H5 Hs, Te, MdirX, MdirY, WindX, WindY Hs
NN T1 Te Te
NN T2 Te, Hs Te
NN T3 Te, Hs, MdirX, MdirY Te
NN T4 Te, Hs, WindX, WindY Te
NN T5 Te, Hs, MdirX, MdirY, WindX, WindY Te

2.3. Assessment of wave energy resource

According to the wave energy resource assessment algorithms
by Cornett (2008), the wave energy density is calculated by:

Pw =
ρwg2

64π
Hs2Te (2)

where Pw is the wave energy density flux per unit of wave-crest
length (kW m−1), Hs is in m, and Te is in s. Furthermore, ρw is
the density of seawater as 1025 kg m−3, and g is the gravitational
acceleration as 9.8 m s−2.

It is important to evaluate the stability of Pw for the develop-
ment and utilization of wave energy converters (WECs) because
stable wave energy is advantageous to the acquisition and con-
version of energy (Cornett, 2008). The wave energy stability is
quantified by the coefficient of variation (Cv) by the formula:

v =

[
N∑
i=1

(
Pwi − Pw

)2
/N

]1/2

/Pw (3)

where Pw is the mean of Pw and N is the sample size of Pw .
The available level frequency (ALF) and the rich level fre-

uency (RLF) are important criteria to measure the rich degree
f wave energy resources. Zheng et al. (2013) stated that wave
nergy is available when the density is greater than 2 kW m−1,
hile the region where density is greater than 20 kW m−1 is
onsidered a rich area. This criterion was followed by Wan et al.
2015). In addition, they proposed that wave energy with a Hs
eing not less than 1 m or not greater than 4 m is exploitable.
s some excellent wave power devices can well absorb the wave
nergy when the wave is higher than 0.5 m (Zheng et al., 2013),
n this study, we yield to relatively moderate criteria, and ALF and
LF are defined as follows:

ALF =
n
(
Pw ≥ 2 kW m−1, 0.5 m ≤ Hs ≤ 4 m

)
N

× 100%

RLF =
n
(
Pw ≥ 20 kW m−1, 0.5 m ≤ Hs ≤ 4 m

)
N

× 100%

(4)

where n is the size of samples in which Pw and Hs satisfy the
corresponding criteria, and N is the total sample size. As the
technical progress and the varying of the geographic condition,
the standard indicating the abundant level of the wave energy
may differ. For example, Stopa et al. (2013) expected that WECs
will require 5 kW m−1 of Pw to be operational and an annual
median of 12 kW m−1 for economic viability in Hawaii. Therefore,
this criterion is also concerned in the present study.

3. Results and discussion

3.1. Calibrated result of the ERA5 data

The ANN models listed in Table 1 were performed to calibrate
the Hs and Te of ERA5 data. Based on Dataset 1, calibration
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Table 2
Data periods for ANN training and verification.

Data period Calibrated parameter Training period ∼80% Verification period ∼20%

Dataset 1 May–Sep. 2019 Hs May–Aug. 2019 Sep. 2019

Dataset 2 Nov. 2018–Apr. 2019
Oct. 2019–Mar. 2020

Hs Nov. 2018–Apr. 2019
Oct.–Dec. 2019

Jan.–Mar. 2020

Dataset 3 Nov. 2018–Mar. 2020 Te Nov. 2018–Dec. 2019 Jan.–Mar. 2020
Fig. 4. Taylor diagrams of ANN models in the training stage (a, c) and the verification stage (b, d) in the calibration of Hs (upper panels) and Te (lower panels).
n the figures, ERA5 indicates the results of uncalibrated model data, and buoy indicates the reference values observed by the buoy. Note that the RMSD in Taylor
iagram is the centered pattern root-mean-square difference (Taylor, 2001), which is different from the root-mean-square deviation.
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odels for Hs of the summer monsoon period were trained and
erified. The synchronous hourly data from ERA5 and buoy during
ay–August 2019 were used for training to establish models NN
1–H5. Then, the independent data of September 2019 were used
o verify the models. Similarly, calibration models for Te during
he whole observation period were established based on Dataset
. The data during November 2018–December 2019 were used
or training to establish models NN T1–T5, and the data from
anuary–March 2020 were used to verify the models. The overall
alibration performance of the ANN models in the training and
erification stages is illustrated in Taylor diagrams (Fig. 4). The
iagrams show that compared with the original Hs and Te of
RA5, all of the calibrated results using different ANN models
 c
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re closer to the observation values, making the centered pat-
ern root-mean-square difference, the standard deviation, and the
orrelation coefficient improve significantly.
The time series with a scatter diagram of Hs and Te during

he verification stage are illustrated in Figs. 5 and 6, respectively.
fter calibration, the RMSE of Hs in September 2019 decreased
rom 0.41 m to 0.19–0.23 m (Fig. 5). The mean absolute error
nd bias also decrease. In general, the NN H5 shows the best
mprovement. As shown in Fig. 6, Te calibrated by models NN
1–T5 agrees well with the field observation data in the verifying
tage, with the RMSE reduced from 0.64 s to 0.39–0.48 s.
The more relevant environmental factors are considered, the

ore information can be brought to the neural network, which

an improve the accuracy of the neural network model
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Fig. 5. Comparison of the (a) time series and (b–g) scatter plots of Hs between the ANN model results and buoy observations in the verification stage based on
Dataset 1 (Table 2).
(Albuquerque et al., 2018; Lu et al., 2019). However, in the ANN
models established in this study, additionally considering the
wind field, wave direction and other factors did not bring obvious
improvement to the calibration effect of Hs and Te (Figs. 5c–g
and 6c–g). This may be because the relationship among variables
such as wind field and wave height, direction, and the period has
been relatively stable after the modulation of the ERA5 model.
Therefore, even if these parameters were supplemented, they did
not bring much new information to the ANN models. The current
calibration results are close to the best level that can be achieved
by using ERA5 data.

Based on the calibration and verification results, models NN
H5 and NN T2 are respectively selected to calibrate the ERA5 Hs
and Te data from May to September and the whole month of
each year from 1979 to 2020. It is worth mentioning that the
ANN-calibrated ERA5 Hs from October to April was not adopted in
this study. Calibration experiments of the REA5 Hs corresponding
to these months were also experimentally conducted based on
Dataset 2, and all ANN models did not show a distinct calibration
effect of the Hs (figures omit). Furthermore, the original data were
already in good agreement with observations during the periods
from November 2018 to April 2019 and from October 2019 to
March 2020, representing an RMSE of 0.22 m (Fig. 2e), which is
close to that of calibrated Hs during the summer monsoon (0.19–
0.23 m in Fig. 5). As the wave characteristic here is dominated by
the monsoon climate, it can be inferred that the ERA5 Hs may
also represent a higher accuracy from October to April during
5072
other years. As a result, the original Hs from October to April
were combined with the calibrated Hs from May to September
for further wave energy assessment.

3.2. Seasonal and long-term characteristics of the wave energy

The wave energy parameters, including Pw, Cv, ALF, and RLF,
were calculated with calibrated data for the last 40 years. An-
nually, wave energy is higher and more stable during winter,
lower and less stable in summer monsoons, and lowest and least
stable in spring (Fig. 7). The variation feature of wave energy is
consistent with that of the SCS monsoons (Wyrtki, 1961; Wu and
Wang, 2002; Su et al., 2017). The winter monsoon is relatively
strong. Accordingly, the Pw from October to February is stronger,
ALF and RLF are higher, and the stability of wave energy resources
is also higher (Cv is lower). During these months, the monthly
averaged Pw is higher than 5 kW m−1, with an ALF higher than
50%. Then, with the weakening of the winter monsoon, the wave
energy decreases. In spring, the wave energy resource is poor,
and the ALF is low. The annual bottom of Pw appears in May.
Later, with the outbreak of the summer monsoon, wave energy
resources rapidly increased. In general, wave energy potential
here is not abundant, especially outside winter, and therefore, a
hybrid solution with e.g., offshore wind energy, could be much
more feasible.

Clarifying the directional characteristics of wave energy is
important to improve the efficiency of WECs (Wang and Lu,
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Fig. 6. Similar to Fig. 5 but for Te based on Dataset 3.
009). The percentage of wave occurrence by incoming direction
nd by wave energy is illustrated by wave roses (Fig. 8). The re-
ion experiences a seasonal reversing wave climate. This feature
s consistent with the seasonal variation of the SCS monsoons,
here the wind directions reverse seasonally (Wyrtki, 1961; Wu
nd Wang, 2002). The wave energy is concentrated during sum-
er and winter, with the energy coming from the N-E quadrant
nd the S-W quadrant, respectively. Annually, the most occurring
ave energy mainly comes from NNE and WSW, which both
ccount for more than 20% of the total energy. The wave energy
f more than 20 kW m−1 mostly comes from the NNE and N
irections, which occurs in autumn and winter. In summer, most
ave energy has a higher occurrence from WSW, accounting for
ore than 60% of the total. In autumn, as the summer monsoon
ecays and the winter monsoon rises, wave energy propagations
rom NNE and WSW coexist. Such seasonal variations should be
ully considered in the design and deployment of WECs in the
SCS.
The combined scatter and energy diagrams of Hs and Te based

n the monthly average data from 1979 to 2019 (Fig. 9) provide
omprehensive information on the occurrence frequency of wave
nergy resources. The annual mean diagram shows that the bins
rom 0.5–3 m in Hs and 4–8 s in Te provide outstanding contribu-
ions (∼70%) to the total energy. The wave energy in summer and
5073
winter, compared with those in spring and autumn, tends to be
distributed in sea states with higher Hs and Te. The Pw bins ex-
ceeding 10 kW m−1 are more widely distributed in winter than in
other seasons, suggesting stronger wave energy during that time.
According to Stopa et al. (2013), wave power with a minimum
of 5 kW m−1 combined with a median value of 12 kW m−1 is
highly desired for WEC devices. The Hs-Te bins with outstanding
contributions to the total energy in Fig. 9e are basically above the
isoline of 5 kW m−1. However, they are seldom exceeding 12 kW
m−1, and far less than those in the Irish seas, Atlantic, Scotland
where the energy fluxes can be high as an order of 30–50 kW
m−1 (Reeve et al., 2011; Young et al., 2011). The results suggest
a possible shortage for wave energy farming via WECs, and a
hybrid solution with offshore wind energy, current energy, and
solar energy (Li et al., 2022a; Pérez-Collazo et al., 2015; Widén
et al., 2015) would be more suitable for the area.

It is noteworthy that the diagrams also indicate that the largest
contribution of wave energy does not correspond to the bins
with the largest occurrence; likewise, the bins with the largest
occurrence do not necessarily provide the largest contribution.
For example, the highest annual energy percentage occurs when
Hs and Te lie in the interval of 2.0–2.5 (m) and 6–7 (s), accounting
for 13.0% of the total energy, while the occurrence number in the
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Fig. 7. Multiyear (1979–2019) monthly averages of wave energy density (Pw black solid line in a), coefficient of variation (Cv, gray dotted line in a), wave energy
available level frequency (ALF, black solid line in b), and rich level frequency (RLF, gray dotted line in b).
Fig. 8. Seasonal and annual wave energy roses averaged over 1979–2019.
n
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nterval is 28 h per month, which is not the most frequent among
ll intervals (Fig. 9e). This characteristic can provide an important
eference for the design of a WEC to meet the needs of energy
cquisition.
The long-term variation analysis shows a continuous growth

rend of the wave energy resources in the SSCS in the last 40 years
Fig. 10). The annual averaged ALF is continuous at no less than
0%, and Cv has little long-term trend with high interannual
5074
fluctuations between 1.2 and 2.2. The Pw, ALF, and RLF show sig-
ificant increasing trends of 0.027 kW m−1, 0.12%, and 0.05% per
ear, with P values equal to 0.003, 0.032, and 0.027, respectively.
he results of Zheng (2021) integrated several sets of reanalysis
ata showed that the growth trend of wave energy in the SSCS
s about 0.02–0.04 kW m−1 per year, which is consistent with
he trend proposed in this paper. It should also be pointed out
hat the trend of wave energy resources in the SSCS is not high
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Fig. 9. Seasonal and annual mean bivariate distributions of occurrence and wave energy in terms of significant wave height (Hs) and energy period (Te) averaged
ver 1979–2019. The color represents the contribution of the sea state to the total energy, the numbers mark the occurrence of sea states in hours per month, and
he isolines indicate the wave energy density calculated by Eq. (2). (For interpretation of the references to color in this figure legend, the reader is referred to the
eb version of this article.)
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ompared with the Indian Ocean and the Western Pacific, whose
nnual increasing rate of wave energy is as high as 0.06–0.12 kW
−1 per year and 0.15 kW m−1 per year (Zheng, 2021).
Such a growing trend can be related to global climate change.

n recent years, probably as a consequence of oceanic warming,
lobal wave height in extreme conditions (90th percentiles) has
een increasing (Young and Ribal, 2019), the average wind speed
nd wave energy resources in global oceans have shown obvi-
us increasing trends (Thomas et al., 2008; Young et al., 2011;
heng and Li, 2015; Zheng, 2021). Further analysis in the wind
ield variations indicates that the rising trend of wave energy
n the SSCS is related to the enhancement of waves generated
nd propagated from the northeast region of the SCS near the
uzon Strait (Fig. 11). It can be seen from the figure that the
ind speed in the SSCS near the study site has not changed
ignificantly in the last 40 years. In contrast, the wind speed in
5075
he northeastern SCS near the Luzon Strait shows a significant
pward trend during these years. Previous studies have shown
hat the most obvious rising trend of wave energy in the SCS
ies in the northeast region, and the growth trend extends from
ortheast to southwest (Zheng and Li, 2015). In the SSCS, the
well propagating from northeast to southwest dominates the
ave composition (Su et al., 2017). Therefore, the growth trend
f waves in the northeast can gradually spread to the SSCS in the
orm of swell propagation.

In comparison, in some relatively closed regions such as the
ersian Gulf and Mediterranean sea, the changing trend of wave
nergy resources is relatively insensitive to the local wind speed,
robably due to the limitation of the wind zone distance (Em-
anouil et al., 2016). Moreover, a decadal change of wind direc-

ion to the land frontier can obstruct the development of waves
nd thus lead to a long-term decrease in wave energy (Kamranzad
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Fig. 10. Long-term (1979–2019) trends in annual average (a) wave energy density (Pw), (b) available level frequencies (ALF), (c) rich level frequencies (RLF), and (d)
oefficient of variation (Cv).
Fig. 11. Long-term (1979–2019) trends of annual average wind speed in (left panel) the southern and (left panel) the northeastern South China Sea. The calculation
egions correspond to the red boxes (W1 and W2) in Fig. 1.
t al., 2013). By contraries, the SCS has a wide enough sea area to
pread the wave energy growing in the northeast to the SSCS.

.3. Significance of data calibration for the wave energy assessment

To analyze the possible errors caused by the use of uncali-
rated data to assess wave energy, the seasonal and long-term
ariations in wave energy calculated in the above section are
eanalyzed by using the original ERA5 data that are not calibrated
y any models. The results show that there are significant dif-
erences between the assessment results of the calibrated data
nd the original data (Fig. 12). For example, the Pw, ALF, and RLF
alculated by uncalibrated data are higher than those calculated
y calibrated data (Fig. 12a and b). Taking the results of summer
s an example, the Pw and ALF are overestimated by using uncal-
brated data with 1.8 kW m−1 and 9.7%, respectively, compared
with the results of calibrated data. For the long-term variations,
although calculation using the uncalibrated data would not mis-
judge the significant increasing trend of wave energy resources, it
will overestimate the magnitude of the trend (Fig. 12c). According
to the results of the calibrated data, the ALF increases by 0.12% per
year. If the data were not calibrated, the rate became 0.18% per
year, which was overestimated by 50%. These results indicate that

if the wave energy was assessed based on uncalibrated data, the

5076
results could become too optimistic, which may lead to a waste
of investment in energy development.

Moreover, the bivariate distributions of occurrence and wave
energy in terms of Hs and Te may be misunderstood by the un-
calibrated data (Fig. 13). The analysis shows that the main energy
is generally concentrated in waves of 0.5–3 m height, regardless
of whether the data are calibrated or not. However, based on the
uncalibrated data, the wave energy with a relatively short period
(3–6 s) would be underestimated, while the wave energy with
a relatively long period (6–11 s) would be overemphasized. If
inaccurate parameter information is used in the design of WECs,
it may lead to devices being unable to achieve their optimal
capacity. Therefore, whether the data are calibrated will affect the
judgment of the wave energy level and the reasonable design of
the WEC.

3.4. Implications for wave energy assessment in other multi-island
regions

There are many islands and reefs in the SCS (Fig. 1). The
installation of WECs is often close to islands so that the costs
will not be too high and can be profitable for communities. Nu-
merical models can provide long-term series of wave parameter
information, so they are widely used in wave energy assessments

(Zheng et al., 2012, 2013; Ali et al., 2015; Wan et al., 2018; Wang
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Fig. 12. Comparison of wave energy parameters calculated by original ERA5 data
(plots in blue) and by date calibrated by buoy observations using neural network
models (plots in red). (a) is the annual and seasonal mean of wave energy
density (Pw) and coefficient of variation (Cv), (b) is the annual and seasonal
ean of available level frequencies (ALF) and rich level frequencies (RLF), and

c) is the annual trend of Pw , ALF, RLF and Cv, and their correlation coefficients
r) and p values with year. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)

t al., 2018; Lin et al., 2019; Sun et al., 2020). However, in multi-
sland regions, the reliability of model data may need to be fully
alidated.
Our results mainly indicate that it is necessary to calibrate

he model data when evaluating wave energy in multi-island
egions. There was a significant difference between the ERA5
odel data and field observations at our study site (Fig. 2). The
ain reason for the difference may be that the model does not
ave enough spatial resolution to characterize the topography
f islands and reefs. By comparing the models of Wang et al.
2018) and Sun et al. (2020), it can be found that the island’s
esistance to waves is relatively obvious in the higher-resolution
odel. If the reef terrains cannot be distinguished, the wave
ropagation distance in the model will be longer than the actual
istance, so the component of the swell will be larger, which
ncreases the model values of Te (Fig. 2). In addition, the waves
n the SCS are affected by the monsoons, with waves from the
E dominating during the winter monsoon and those from the
W dominating during the summer monsoon (Wyrtki, 1961; Wu
nd Wang, 2002; Su et al., 2017). As the site is relatively close
o a reef in the south and relatively open in the north (Fig. 1),
he waves are more susceptible to shallowing and diffraction
uring the summer monsoon, resulting in a decrease in Hs (Fig. 2).
ith the improvement of numerical simulation technology and
5077
he increase in computing resources, the spatial resolution of the
umerical model is increasing. However, although the 5–7 km
esolution model can simulate relatively large reefs in the Xisha
slands and Zhongsha Islands (Sun et al., 2020), the spatial scale of
otted reefs in the Nansha region is mostly less than 1 km (Jiang
t al., 2018). These reefs are still difficult to identify effectively in
ost numerical models.
Our results verify the effectiveness of the ANN method to

alibrate model data and then evaluate wave energy in multi-
sland regions (Figs. 4–10). Previous studies have shown that the
NN model is effective for wave model calibration and wave
nergy assessments (Reikard et al., 2011; Hadadpour et al., 2014;
ánchez et al., 2018; Avila et al., 2020; Li et al., 2020). However,
ecause it is difficult to obtain long-series wave observations for
emote island regions, the existing studies combining models and
n situ data are mostly performed in nearshore regions. Although
nly one site is deployed in this study, the typical example
an be extended to other multi-island regions. For other sites,
he azimuth and distance of surrounding reefs may affect the
ariations in model bias. For example, the area south of our site
s relatively close to reefs (Fig. 1), which results in a larger model
ias during the summer monsoon when waves propagate from
he SW (Fig. 2). Moreover, our site is located in the center of
multi-island region where swells from all directions can be

argely blocked (Fig. 1). Thus, the wave period from the models
ould be larger than the true value, which may affect the accu-
acy of the wave energy calculation. Although most studies focus
n Hs, the calibration of Te is particularly important in this study
Fig. 13). Therefore, it is necessary to establish an appropriate
NN model according to the actual situation for a certain site.

. Conclusion

In this study, the wave energy resources of a typical site in
multi-island region in the southern South China Sea (SSCS)
ere systematically analyzed by integrating model-based ERA5
ata from 1979–2020 and field observation data for a year and
half. Combined with the observation data of a buoy deployed

n the SSCS, artificial neural network (ANN) models were estab-
ished to calibrate ERA5 reanalysis data over nearly 40 years. The
erification results showed that the calibrated significant wave
eight and mean wave period are in good agreement with the
bservation data.
The seasonality and long-term trend of wave energy resources

re systematically analyzed based on the data. Analysis results
ndicate that due to the influence of monsoons, the wave energy
esources in the SSCS show significant seasonal variations. Wave
nergy is higher and more stable in winter (with an average
nergy density higher than 5 kW m−1 and an available level
requency higher than 50% from October to February), lower and
ess stable in the summer monsoon, and lowest and least stable
n spring. In general, wave energy potential here is not abundant,
nd a hybrid solution with offshore wind energy, current energy,
nd solar energy would be more suitable for the area.
There are obvious variations in the characteristics of wave

eight, wave period, and wave direction for the energy resources
n different seasons. On the long-term scale, the intensity, avail-
bility, and stability of wave energy resources have shown an
pward trend in the last 40 years. Particularly, wave power den-
ity in the SSCS shows significant increasing trends of 0.027 kW
−1 per year. The rising trend is consistent with the enhance-
ent of wind speed near the Luzon Strait, suggesting the growth

rend of waves in the northeast region of the SCS can gradually
pread to the SSCS in the form of swell propagation.
The presented example can provide a reference for the evalu-

tion of wave energy in other multi-island regions. By comparing
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Fig. 13. (a) Same as Fig. 9e but calculated based on original reanalysis data; (b) the difference between Fig. 12a minus Fig. 9e.
he results of wave energy assessments with calibrated or uncal-
brated data, it is found that if the data are not calibrated, the
ave energy level may be overestimated, and the magnitude of

ts long-term trend may be misjudged, thus misleading the design
f power generation equipment. Therefore, when planning and
tilizing wave energy resources, it is necessary to fully consider
he reliability of the data and correct the data effectively by
ertain methods. Artificial intelligence technology is expected to
rovide a fast and convenient tool for the correction of such data.
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